Below you can find a list of publications (last updated Jul 2023). Also see my
[1]
B. Eslami-Mossallam et al., “A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity,” Nature Communications, vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-28994-2.
[2]
S. C. Bera et al., “The nucleotide addition cycle of the SARS-CoV-2 polymerase,” Cell Reports, vol. 36, no. 9, 2021.
[3]
M. Seifert et al., “Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases,” Nucleic acids research, vol. 48, no. 10, pp. 5591–5602, 2020.
[4]
T. J. C. Cui et al., “Argonaute bypasses cellular obstacles without hindrance during target search,” Nature Communications (in press), vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-019-12415-y.
[5]
B. A. Berghuis et al., What is all this fuss about Tus? Comparison of recent findings from biophysical and biochemical experiments, vol. 53. Taylor & Francis, 2018, pp. 49–63. doi: 10.1080/10409238.2017.1394264.
[6]
A. L. Nord, A. F. Pols, M. Depken, and F. Pedaci, “Kinetic analysis methods applied to single motor protein trajectories,” Physical Chemistry Chemical Physics, vol. 20, no. 27, pp. 18775–18781, 2018.
[7]
D. Dulin et al., “Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria,” Nature Communications, vol. 9, no. 1, p. 1478, Dec. 2018, doi: 10.1038/s41467-018-03902-9.
[8]
M. Klein, B. Eslami-Mossallam, D. G. Arroyo, and M. Depken, “Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules,” Cell Reports, vol. 22, no. 6, pp. 1413–1423, 2018, doi: 10.1016/j.celrep.2018.01.045.
[9]
D. Dulin et al., “Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers,” Cell Reports, vol. 21, no. 4, pp. 1063–1076, Oct. 2017, doi: 10.1016/j.celrep.2017.10.005.
[10]
A. A. van den Berg and M. Depken, “Crowding-induced transcriptional bursts dictate polymerase and nucleosome density profiles along genes,” Nucleic Acids Research, vol. 45, no. 13, pp. 7623–7632, Jul. 2017, doi: 10.1093/nar/gkx513.
[11]
M. Klein, S. D. Chandradoss, M. Depken, and C. Joo, “Why Argonaute is needed to make microRNA target search fast and reliable,” in Seminars in cell & developmental biology, 2017, vol. 65, pp. 20–28.
[12]
T. Künne et al., “Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation,” Molecular Cell, vol. 63, no. 5, pp. 852–864, Sep. 2016, doi: 10.1016/j.molcel.2016.07.011.
[13]
D. Dulin et al., “Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase,” Cell Reports, vol. 10, no. 6, pp. 983–992, Feb. 2015, doi: 10.1016/j.celrep.2015.01.031.
[14]
D. Dulin, B. A. Berghuis, M. Depken, and N. H. Dekker, Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments, vol. 34. Elsevier Current Trends, 2015, pp. 116–122. doi: 10.1016/j.sbi.2015.08.007.
[15]
D. Dulin, I. D. Vilfan, B. A. Berghuis, M. M. Poranen, M. Depken, and N. H. Dekker, “Backtracking behavior in viral RNA-dependent RNA polymerase provides the basis for a second initiation site,” Nucleic Acids Research, vol. 43, no. 21, p. gkv1098, Oct. 2015, doi: 10.1093/nar/gkv1098.
[16]
B. a Berghuis et al., “Strand separation establishes a sustained lock at the Tus-Ter replication fork barrier.,” Nature chemical biology, vol. 11, no. 8, pp. 579–85, Aug. 2015, doi: 10.1038/nchembio.1857.
[17]
A. Candelli et al., “Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution,” Proceedings of the National Academy of Sciences, vol. 111, no. 42, pp. 15090–15095, 2014, doi: 10.1073/pnas.1307824111.
[18]
M. C. Moolman et al., “Slow unloading leads to DNA-bound beta2-sliding clamp accumulation in live Escherichia coli cells,” Nat Commun, vol. 5, p. 5820, 2014, doi: 10.1038/ncomms6820.
[19]
N. Y. Yao et al., “Stress-Enhanced Gelation: A Dynamic Nonlinearity of Elasticity,” Physical Review Letters, vol. 110, no. 1, p. 018103, Jan. 2013, doi: 10.1103/PhysRevLett.110.018103.
[20]
M. Depken, J. Parrondo, and S. Grill, “Intermittent Transcription Dynamics for the Rapid Production of Long Transcripts of High Fidelity,” Cell Reports, vol. 5, pp. 1–10, 2013.
[21]
B. Stuhrmann, M. Soares E Silva, M. Depken, F. C. MacKintosh, and G. H. Koenderink, “Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 2, 2012, doi: 10.1103/PhysRevE.86.020901.
[22]
N. Y. N. Y. Yao et al., “Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4.,” Journal of Molecular Biology, vol. 411, no. 5, pp. 1062–71, Sep. 2011, doi: 10.1016/j.jmb.2011.06.049.
[23]
M. e Silva, M. Depken, B. Stuhrmann, M. Korsten, F. C. MacKintosh, and G. H. Koenderink, “Active multistage coarsening of actin networks driven by myosin motors,” Proceedings of the National Academy of Sciences, vol. 108, no. 23, pp. 9408–9413, 2011.
[24]
M. Mayer et al., “Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows.,” Nature, vol. 467, no. 7315, pp. 617–621, 2010, doi: 10.1038/nature09376.
[25]
C. Broedersz, M. Depken, N. Yao, M. Pollak, D. Weitz, and F. MacKintosh, “Cross-Link-Governed Dynamics of Biopolymer Networks,” Physical Review Letters, vol. 105, no. 23, Nov. 2010, doi: 10.1103/PhysRevLett.105.238101.
[26]
M. Depken, E. A. Galburt, and S. W. Grill, “The origin of short transcriptional pauses,” Biophysical Journal, vol. 96, no. 6, pp. 2189–2193, 2009, doi: 10.1016/j.bpj.2008.12.3918.
[27]
M. Depken and H. Schiessel, “Nucleosome shape dictates chromatin fiber structure.,” Biophysical journal, vol. 96, no. 3, pp. 777–784, Feb. 2009, doi: 10.1016/j.bpj.2008.09.055.
[28]
M. Depken, J. B. Lechman, M. van Hecke, W. van Saarloos, and G. S. Grest, “Stresses in smooth flows of dense granular media,” Europhysics Letters, vol. 78, no. 5, p. 58001, 2007.
[29]
M. Depken, W. Van Saarloos, and M. Van Hecke, “Continuum approach to wide shear zones in quasistatic granular matter,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 73, no. 3, 2006, doi: 10.1103/PhysRevE.73.031302.
[30]
M. Depken and R. Stinchcombe, “Exact probability function for bulk density and current in the asymmetric exclusion process,” Physical Review E, vol. 71, no. 3, p. 36120, 2005.
[31]
M. Depken and R. Stinchcombe, “Fluctuation-dissipation relation and the Edwards entropy for a glassy granular compaction model,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 71, no. 6, 2005, doi: 10.1103/PhysRevE.71.065102.
[32]
M. Depken and R. Stinchcombe, “Exact joint density-current probability function for the asymmetric exclusion process,” Physical Review Letters, vol. 93, no. 4, pp. 040602–1, 2004, doi: 10.1103/PhysRevLett.93.040602.
[33]
R. Stinchcombe and M. Depken, “Marginal Scaling Scenario And Analytic Results For A Glassy Compaction Model,” Physical Review Letters, vol. 88, no. 12, p. 125701, Mar. 2002, doi: 10.1103/PhysRevLett.88.125701.
[34]
M. Depken, “On the gallavotti-cohen symmetry and the fluctuation theorem for stochastic processes,” Los Alamos archive: http://www. arxiv. org, 2002.